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ALGEBRAIC ASPECTS OF COMPUTING NETWORK RELIABILITY

D. R. Shier

Department of Mathematical Sciences

Clemson University

Clemson, SC 29634

1. Introduction

It is important to be able to assess the reliability of a complex system, based on

knowledge concerning the reliabilities of its individual components. Such problems

arise with increasing frequency in the analysis of telecommunication, distribution and

transportation systems, all of which can be modeled as networks of various sites (or

nodes) interconnected by edges. In a typical situation, edges of the network (which

may be directed or undirected) are assumed to fail in a statistically independent

fashion with known probabilities. For such networks, a variety of probabilistic

measures of system performance have been considered: namely, the probability that

two given nodes can communicate [11,13,33], that a given node can communicate with

a specified portion of the network [6,25], or that every pair of nodes can communicate

[8,26,33].

Numerous algorithms have been proposed for calculating these measures of

network reliability. One class of methods is based on the idea of a path, a minimal set

of edges whose operation ensures that the system functions. In this approach, paths

must first be enumerated and then combined either by applying the inclusion-exclusion

principle or by effecting a partition into mutually disjoint events [2,13-15,17,27]. An

alternative approach uses instead the enumeration and combination of cutsets,

minimal sets of edges whose failure ensures that the system cannot function

[1,11,12,17,22].

A different approach, called pivotal decomposition, considers the two states
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(operative or failed) assumed by a given edge in the network [2,7,16,26]. Based on

these two states, the given network decomposes into two smaller subnetworks. This

process is repeatedly applied until all resulting subnetworks are solvable.

Satyanarayana and Chang [26] have formulated and implemented an optimal edge

selection strategy that achieves the minimum possible computational effort in the case

of undirected networks.

Despite the considerable effort spent in developing algorithms for the calculation

of network reliability, the effective computation of such probabilistic measures for

general networks remains elusive. Namely, all known general procedures exhibit a

worst-case behavior that is exponential in the size of the network. Since no

polynomially-bounded algorithm has yet been devised, the exact computation of

network reliability has been confined to networks of rather small size. In fact, most

reliability problems of any substance are now known to be NP-hard or #P-complete

[5,20-22,24,32], making it extremely unlikely that any polynomially-bounded algorithm

will ever be found. As a result, recent research has concentrated on developing

algorithms adapted to special network structures (where polynomial-time algorithms

are possible), or has pursued a simulation approach [10].

A number of special classes of undirected networks have recently been analyzed

with success. Polynomial-time algorithms are now available for calculating certain

reliability measures in series-parallel [28], inner-four-cycle-free [18], and cube-free [19]

planar graphs. Provan [20] has shown, however, that the problem of determining

source-to-terminal reliability remains #P-complete for the general class of planar

graphs. In order to analyze more complex networks topologies, the idea of pivotal

decomposition together with polygon-to-chain reductions [34] can be used to

decompose the original problem into smaller subproblems.

Similar results and tools are not as readily available in the case of directed

networks. The only significant types of directed networks that are known to admit a

polynomial-time algorithm are "basically-series-parallel" networks [3,4]. For general
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directed networks, the algebraic approach developed by Shier and Whited [30,31]

yields algorithms for solving, either approximately or exactly, some relatively complex

source-to-terminal problems, although the computation time grows relentlessly with the

size of the network.

This paper investigates a general algorithm for calculating source-to-terminal

reliability in certain well-structured classes of networks, exemplified by planar graphs.

The emphasis is on identifying an underlying lattice structure that captures certain

algorithmically desirable features of such networks. The motivation for the present

work derives from several recent results concerning cutset-based algorithms for

network reliability. Specifically, Buzacott [9] discusses how reliability formulas using

the disjoint products form can be simplified by making use of a certain ordering of

cutsets in the network. Shanthikumar [29] has also exploited ordering properties of

cutsets to obtain an efficient recursive algorithm to calculate an upper bound on

source-to-terminal reliability. Most recently, Provan and Ball [22] have described a

pseudo-polynomialalgorithm for computing the reliability of an arbitrary

source-to-terminal network (either directed or undirected). Namely, an algorithm is

provided with worst-case complexity that is polynomial in the number of cutsets

separating the source s and terminal t. Provan and Ball further show that for directed

networks no algorithm polynomial in the number of (s,t) paths can exist unless P = NP.

For networks of reasonable size and sparsity, the collection of (s,t) paths can be

quickly enumerated using a modified depth-first search of the network [23]. The

generation of all (s,t) cutsets is not as straightforward, particularly in the case of

directed networks. Thus, while a pseudo-polynomial algorithm exists relative to the

number of cutsets, the effort required to generate such cutsets may be strikingly larger

than that required to generate the corresponding paths. As an example, consider the

dodecahedron graph given in Figure 1, having 20 nodes and 30 edges. This example

has 7376 (s,t) cutsets but only 780 (s,t) paths. Thus, in this instance not only are the

cutsets more difficult to generate than the paths, but there are substantially more

63
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cutsets than paths involved.

The emphasis here is to crystallize those features of cutset-based algorithms that

make them theoretically attractive (pseudo-polynomial behavior), while at the same

time broadening the scope from cutsets to other, more easily computed, entities. We

present a general framework and a general recursive algorithm defined on certain

collections of objects (e.g., cutsets and paths) that admit a suitable partial ordering.

This algorithm will run in time polynomial in the number of such objects.

Jil
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2. Basic Definitions and Concepts

Let E = (e1 .... en) be a set of components, subject to failure, and let X = {X I... Xr} be

a collection of subsets of E. Components in E have two states: active and inactive. A

set Xi c E is called active if all its components are active. We suppose that (X, _) is a

partial ordering having the lattice property: namely, any two Xi, Xj r X have a unique

least upper bound Xi v Xi and a unique greatest lower bound Xi A X. There are two

additional requirements imposed here.

Closure. If Xi is active and Xj is active, then Xi v Xj and Xi A Xj are active. (1)

Connectivity. If e r X. and e E Xj then e e [Xi, X]={ Z e X: Xi !5 Z ! X. (2)

The event (Xi is active) will be denoted by Ai. We will be interested in calculating the

quantity
Q (X) = Pr(A 1uA 2 ... U Ar).

Examole 1. Consider the source-to-terminal undirected network G shown in Figure 2,

with components (edges) E = {e1,e2 ,e3 ,e4,e,). Here the Xi's will be the (s,t) cutsets in

the network defined by the following edge/node sets:

X1 = {e1,e2) v1 = (s)

X2 = {e1 ,e3,e5) V2 = (s,b)

X3 = {e2,e3 ,e4} V3 = {s,a)

X4 = {e4,e5 }  V4 = {s,a,b}

That is, the cutset Xi consists of all edges in G = (V,E) joining nodes of V with nodes of

V-V i. The partial order _ is defined by

xi > x1  * vi 2 vi .

The associated Hasse diagram for this partial order is shown in Figure 3. It is easy to
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verify that requirements (1) and (2) both hold. By considering an "active" component to

mean a "failed" component, the event Ai signifies that all components in Xi fail and Q(X)

is just the network unreliability 1-Rst(G): i.e., the probability that a message sent from s

will be unable to reach t.

Example 2. Again consider the network in Figure 2, with the Xi's now denoting the (s,t)

paths:

X, = {e2 ,es}

X2 = {e ,e,e

*X3= {e2,e3,e4}

X4= {el,e4

We define Xi > Xi to mean that path Xi is geometrically "above" path Xj, yielding the

same Hasse diagram shown in Figure 3. Again, requirements (1) and (2) are seen to

hold. Here, the association of "active" with "functioning" allows Ai to be interpreted as

the event that all components in Xi are functioning, whereupon 0)(X) is the

source-to-terminal reliability Rt(G).

As the above examples illustrate, we can define a partial ordering on the (s,t)

cutsets in an arbitrary network or on the (s,t) paths in an (s,t)-planar network. In both

cases, stipulations (1) and (2) are guaranteed hold. Other (non-network) examples of

coherent systems [7] also exist which admit an ordering such that (1) and (2) are

satisfied with respect to the system's "minpaths" or "mincuts". The following example

illustrates one such case.

Example 3. Consider a system with components {e1,e2,...,e 6}. The system functions if

and only if all components function in at least one of the following subsets ("minpaths"):
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X, = (eje 2,e3}

X2 = {e2,e3,ej

X3 = {e3,e4,es}

X4 = {e4,es,e6)

If the (total) order 'a is defined by X4 2 X3  X2 2 X1 then requirements (1) and (2) will

hold. In this case, the Hasse diagram for the partial order is simply a "chain," and the

sets Xi do not correspond to the paths or cutsets of any network.

A

Q'V
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3. The Recursive Algorithm

In what follows, it will be assumed without loss of generality that the elements of

the partial order have been topologically ordered: that is,

Xi < x Xi= i <j .(3)

We are interested in calculating Q(X) = Pr(A), where A = A1 u A2 u ... U Ar. The events

Ai are not disjoint, however. Accordingly, we define the events Fi (which will be

disjoint) by

Fi = (Xi is the "lowest" active set in X).

These events are well defined in view of (1). Namely, if Xil, Xi2. Xik are active sets

then so is Xi ^ Xi2 A ... A X , and thus Xil A Xi2 A ... A Xk = Xi for some j. Notice that
XiI A Xi2 A ... A Xik -5 Xim for all m, and so Xi, < Xim for all active sets Xim. Thus Xi, is

indeed the lowest active set in X.

Our general development will parallel that of Provan and Ball [22], which was

originally stated in the specific context of (s,t) cutsets. First, it is easy to establish the

following two properties of the Fi's.

Perty. Fi r F= 0 fori *j.

Proof: If Fi and F both occur for i *- j then Xi and Xi are active, so Xi A X is active by (1).

Since X, A Xi :5 Xi andX i A Xj < X, then Xi = Xi ^Xi = Xi, a contradiction. .

. A=F 1 u F2 u ... u Fr.

Proof: Suppose A occurs with Xi,..., X , being active. Then Xi, A ... A Xk = Xi, is active

by (1) and so Fi, occurs. Conversely, if Fi occurs then X, is active and so A occurs. *

A
~As a result of the above properties

qi
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Q(X) = Pr(A) = Pr(Fi), (4)
j-1

and the problem reduces to that of calculating the Pr(F). A general recursion involving

these quantities can be easily derived as follows.
rAi U (Fir) A j)

i-1

=[ j (F~ Aj)] FX i < Xj

U Fin{X1 - Xiisactive)] u F (5)
Xi< Xj I"

The first equality follows from Property 2. The second follows since if Fi r) A,

occurs then Xi A Xi = X i, whence Xi < X . Because all unions in (5) involve disjoint

events,

Pr(A.) =Pr(F ) Pr(X X, is active I F)] + Pr(F.).

Now by requirement (2), e e Xj - Xi cannot be an element of any Xk < Xi. This means

that the event F,, which requires Xi to be active but all Xk < Xi to be inactive, is

independent of the event {Xj - Xi is active), whence

Pr(A) = [ Y Pr(Fi)aij] + P(F) , (6)Pr(Aj) = < X i

where

= ij Pr(X," Xi is active)

1 L- Pr(e is active),
e E X-Xi

assuming the independence of component failures. Rearranging (6) gives the

recursion (see [22])

Pr(Fi.) = Pr(A)- I Pr(Fi) aij. (7)
X i < Xj
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The quantities A; and aij are readily computed and thus Pr(F1 ), Pr(F2 ),.... Pr(Fr) can be

found in turn using (7). The quantity Q(X) can then be determined via (4). The

worst-case complexity of the entire procedure is 0(mx) < O(IX12), where mx indicates

the number of arcs in the full partially ordered set (X,>). Thus the above procedure is

pseudo-polynomial: namely, its running time is bounded by a polynomial in the

number of elements in the partial order.
*. ,

Example 4. Consider the source-to-terminal network given in the upper portion of

Figure 4. The ordering of paths from "top" to "bottom" gives the Hasse diagram shown

in the lower portion of the figure. By using the shorthand notation a= Pr(Aj), fi Pr(Fi)

and denoting the edge reliabilities as Pk, relation (7) yields:

f= a, = P2P7,

f2= a2 - fl (P5P6) = P2P5P6 - P2P5P6P7 ,

3= a3 - fI (PIP 3) = PIP 3P7 - P1P2P3P7,
7

and so forth, yielding Rst (G) = !(X) _ fi"

'I'

. . . - . . ..a .,,..., . , 
, . a . . g . - , o . ,, ' .. .. ,"
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4. An Alternative Formulation

Equation (6), rewritten with our shorthand notation, becomes

aj = I fi ij , ii-Xi<5 X

We can now use Moebius inversion over the partially ordered set (X,>) to obtain

fj = E aigi, (8)
Xi < Xi

where ij is the alternating sum of chain values, taken over all chains Q in (X, ) joining

Xi and Xj. That is,
; .. , { 1 , i=j

e', X(-1)'0 t val(Q) , i~j0

where val(Q) = -a. and IQI denotes the number of arcs in chain Q. Algebraic
-I'.e.o Q

simplification of (8) yields

f = I (-1)I o Qj) , (9)

0i

where the chains 0, extend downward from Xi in (X,>) and

a(Qj) = f-(Pr(e): e E X for some Xi  Q)

gives the joint probability of all edges appearing in some Xi along the chain.

Analogously, when Q ranges over all chains in (X,>) we obtain
D (X) =1 (-1) I e1 Q e) (10)

Q

As an illustration, consider the bridge network in Figure 2 with the associated

partially ordered set (based on paths) given in Figure 5. Then, using equation (9)

yields, for example

r.- w
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f4 = P1P4 - (Pl P3P4P5 +PlP2P4P5+PlP 2P3P4) + 2plp 2P3 P4P5,

where first term corresponds to the chain of length 0, the next (negated) terms

correspond to the three chains of length 1, and the final two terms correspond to the

chains of length 2. The final expansion for f2(X) resulting from (10) has 11 terms,

corresponding to the 11 chains in (X,>). This number is to be compared with the

24 - 1 = 15 potentially occurring terms appearing in the inclusion/exclusion formula [2].

Thus equation (10) captures some of the cancellation found in the topological

expansion formula of Satyanarayana and Prabhakar (27].

'p
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5. Computational Results

Promising computational results have been obtained using the recursive

algorithm described in Section 3. We present in this section a fairly complete analysis

of two particular networks (of moderate complexity) that have thus far resisted any

thorough analysis.

The first network, with 14 nodes and 25 edges, is shown in Figure 6. This

network (suggested by J. S. Provan) is known to be "seff-dual," having 426 paths

joining the specified s and t as well as 426 cutsets separating s and t. Since the

network is (s,t)-planar, the paths can be ordered as described in Section 2 and the

recursive algorithm can then be applied. In order to present the results succinctly,

Table 1(a) presents the coefficients of the reliability polynomial when expressed as a

function Rst(p) of the common edge reliability Pk = p. Table 1(b) lists values of this

polynomial at selected values of p throughout the range [0,1]. As expected, Rst(0) = 0,

* Rs() = 1, and Rst(0.5) = 0.5, with the latter value occurring because the network is

:" self-dual. Computation of the relevant paths and the polynomial Rel(P) required

approximately 2.7 seconds using the IBM 3081-K computer at Clemson University.

A more complex network is the dodecahedron, shown in Figure 1. Since this

network is not (s,t)-planar, the recursive formula was applied relative to the ordering

produced using the (s,t) cutsets. Knowledge of the planarity of the network was,

however, exploited in generating and processing the 7376 cutsets. Table 2(a)

presents the coefficients of the unreliability polynomial Ust = 1 - Rst. now expressed for

convenience as a function of the common edge failure probabil;',y qk = 1 - Pk = q.

Evaluation of Ust(q) at selected values of q is given in Table 2(b). The total time

required to generate the cutsets and produce Ust(q) was under four and a half minutes

of CPU time. It should be noted that the only previous calculations available for this

example required several burs of CPU time (on a similar mainframe) in order to

obtain the value of U(q) at two selected points (q = 0.1, q = 0.5).

amw-U*0-
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Table 1. Reliability Polynomial Rst(p) for Network in Figure 6

(a) Coefficients of Rst(p):

Rst(p)= 4p4 +18p 5 +30p 6 -38p 7 -188p8 -154p9 +128p' 0 +1456p' 1

+ 658 p12 - 3252 p13 - 4952 p14 - 1212 p15 + 37621 p16 - 1082 p17

-213712 p1 +' 483698 p19 - 565880 p20 + 414334 p21 - 198122 p22

+ 60628 p23 - 10850 p24 + 868 p25

(b) Evaluation of Rt(p) at selected points:

p: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rst(p): .0006 .0131 .0774 .2428 .5000 .7573 .9226 .9869 .9994
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Table 2. Unreliability Polynomial U,1(q) for Network in Figure 1

(a) Coefficients of UA():

USA)= 2 q3 + 6q4 + 18 qs+89 q6 +216 q7 -561 q8 -5522 q9-4935 q1O
+5606q1 1363q 2 -624126 q13- 1223316q14

+ 8168604 q15 - 4322481 q16 - 63482286 q17 + 256043573 q18

-560270502 q19 + 848614479 q20 - 961097704q2 l + 841480923 q22

- 577634706 q23 + 311587945 q24 - 131092176 q25 + 42244830 q26

- 10090328 q27 + 1685643 q28 - 176016 q29 + 8656 q30

(b) Evaluation of U,,(q) at selected points:

q0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ust(q): .0029 .0362 .1685 .4272 .7097 .8975 .9767 .9973 .9999
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